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Numerical Study of Axisymmetric
Dielectric Resonators

Shouyuan Shi, Liuging Yang, and Dennis W. Prather

Abstract—in this paper, we present an effective approach to where Af is the 3-dB bandwidth andy is the resonant fre-
study the behavior of axisymmetric dielectric resonators. This ap- guency.
proach is based on the finite-difference time-domain method and To calculate the resonant frequencies gntactors with high
two accompanying techniques in order to increase the accuracy . . . .
and decrease the computational cost. These two techniques areccuracy and resolution using the FFT method requires a sig-
the fast-Fourier-transform approach and the Padé method. This hificant number of time samples, which, in turn, requires a long
method is used to obtain the resonant frequencies and quality computational time. To overcome this limitation, alternate pro-

factors for several resonators. Comparisons are made to show the cedures have been proposed [1]. Two commonly employed tech-
utility of the method. niques are the Prony’s method and generalized-pencil-of-func-
Index Terms—DBielectric resonators, FDTD method,Q-factors.  tion technique, both of which eliminate the need for an FFT by
expanding the time-dependent response in a sum of exponen-
tials. Although both of these methods have advantages over the
FFT technique in terms of the reduction in the computational
ECENTLY, dielectric resonators based on axisymmetrigme, the accuracy of these methods is very sensitive to the sam-
structures have been widely studied. In these studies, fifhg conditions.
calculation of resonant modes is very important. Unfortunately, |n this paper an alternative approach that uses the Padé ap-
analytic solutions are available only for very simple geometriggsoximation in conjunction with the FFT technique to overcome
such as homogeneous and cavities bounded by perfectly cgfe above limitations is employed. As a result, our model is
ducting surfaces. However, in most practical applications, thgry effective in determining the resonant frequencies and the
resonators usually contain complex structures, such as inhompfactors in a relatively small time window, which thereby re-
geneities and complicated boundary conditions. As a result, {f\gces computational cost. In addition, in most FDTD simula-
resonant frequencies adgHactors—which are crucial param-tions, the computational area is 5-10 times larger than the area
eters in the design of resonators—are very difficult to analyzgt the cavity, or resonator, in order to reduce the effects of re-
In these cases, the cavities must be analyzed using numerigaition from the sidewalls. However, such a large FDTD com-
techniques. putational region significantly increase both the computational
One such technique is the finite-difference time-domaiime and memory requirements. Therefore, in our approach, the
(FDTD) technique, which has been employed in the past fgerfectly matched layer (PML) [4], [5] is employed, which al-
the analysis of various types of cavities and open dielectiigys the absorbing boundary to be placed much closer to the
resonators [1]{3]. The advantage of the FDTD technique ovigisonator. As a result, in comparison to previous techniques [1],
alternate frequency-domain methods, such as the methodgf our computational time is considerably less.
moments (MoM) and finite-element method (FEM), is that |n Section II, we discuss our method and its use for the
resonant frequencies of all modes can be calculated in a singifylysis of an axisymmetric perfectly electric conductor (PEC)
simulation by using the time-domain nature of the methagbunded cavity and an open dielectric resonator. Several

rather than individually sweeping the frequency to capture eagimerical results and comparisons are presented in Section |II.
mode.

To obtain the resonant frequencies and the quality factors
(Q-factors) using the FDTD, one must transform the time-de-
pendent response of the FDTD simulation to the frequency do-
main, say, by using the fast Fourier transform (FFT). After pex
forming the FFT on the FDTD output data, we can derive the
resonant frequencies from the local maxima of the response. Th&or an axially symmetric geometry, or so-called body of rev-
Q-factors can then be computed from the following expressioolution (BOR), as shown in Fig. 1, one can use a simplified

two-and-one-half dimensional (2.5-D) FDTD algorithm [6] in-

I. INTRODUCTION

Il. THEORY

Axially Symmetric FDTD Method

Q= ﬁ 1) stead of a full three-dimensional (3-D) technique, as described
Af in [7].
Manuscript received August 19, 2000. To show this, we begin with the assumption that the angular
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8E k OH ;.
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In this manner, there will be two independent sets of differ- ot p 9z
ence equations. The field components in one set are rotated 90 OE 1 OH,, OH.,
with respect to those in another set. Considering that results ob- S + 0By = 8z dp
tained from each of the two sets will show the same resonance
property, we selected to use only one of them, in which the cos- 8E4 kL oE. 4 _19(pHpx) EH (5)
inusoidal terms of{y, ££,, and £, and the sinusoidal terms of ot p Op rk

Ey, H, andH are used Since the Fourier modes in the serie
expansion are mutually orthogonal, one can solve for the eldl
tromagnetic fields for each mode independently. Furthermof®
for each different modé, the differentiation with respect o
reduces the full 3-D problem to an equivalent 2.5-D one. Therg
fore, the Maxwell’s curl equations can be expressed as

%erea is conductivity and the electromagnetic fields are ex-
fessed in cylindrical coordinates.

‘Next, the FDTD method can be used to simulate the scattering
of an axially symmetric geometry. To do this, the whole compu-
"Gtional region is divided into several parts, as shown in Fig. 1.

If we now assume that the electromagnetic-field components
are assigned as illustrated in Fig. 2, we can apply the central

OH, x _kE p 4 Zook 0Ly difference method to (4) and (5), which can be rewritten as
ot p dz
H(I,J)
8H¢7k _ 8E,,7k + 8EZ7;€ r kAt
OH.x _ 10(pEsx) k A P n—1/2
% = B (4) o [E (LJ+1) - E; (1, J)}
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wherep(z) =2 - Ap (x =1 —(1/2),1,1+ (1/2) or I + 1),
Ap, andAz are discretization length in the andz-directions,

From Fig. 2, we see thatonly tie., £;, andH , components
lie on the axis. However, only thE. component along the axis
needs to be computed because the on-axis componeiisg of
and H, are not necessary to update the FDTD fields. Further-
more, E. only needs to be computed for the= 0 mode since
this component equals zero for &ll> 0 modes. This follows
from the fact that any constaptpath integral resulting from
Faraday’s Law, aboyt = 0, integrates to zero fdt > 0. Thus,
the equation for computation @,  is given as

ag;’o + aEZ70=%H¢7O. ©)

As shown in Fig. 1, the computational region is surrounded
by Iy, I's, I'3, andl'y, on which the appropriate boundary con-
ditions are needed to truncate the region and to reduce unwanted
reflections. No absorbing boundary condition (ABC) is needed
for theI'; boundary because the wave toward the axial center is
a standing wave rather than a propagating wave. To simulate free
space outside the resonator, the perfectly matched layer (PML)
is introduced on boundarids,, I';, andI'y. Previously pre-
sented approaches did not use PMLs,I';, andl'y, and, there-
fore, placed them at a sufficiently large distances away (gener-
ally two or three times the size of the disk) from the disk to
avoid inaccuracies or instabilities caused by reflection back re-
flections [1], [2]. In our approach, since we use the PML, the
boundaried’s, I';, andI'y can be put as close as ten or 15
FDTD cells to the resonator without introducing any inaccu-
racy or instability. Therefore, the FDTD computational region
is truncated to one that is considerably smaller, which signifi-
cantly reduces memory requirements and computational time.
In the case of an open dielectric resonator, no condition needs
to be applied on the surface of the resonator, and in the case of
a cavity bounded by perfectly conducting boundaries, we need
only to set the tangential fields to zero on these boundaries.

To apply the PML, we employed the complex coordinate
stretching method [4], [5] to derive the anisotropic PML ABC,
which was given by

VXE=—jwu[A]H
V xH=jwe [A|E (20)
where

s¢34 spsz spsqg

[A] = + ¢ 11)

and

. 12)
WEQ

respectively, and\t is time step that satisfies the dispersion To do this, we first transform the modified Maxwell equations

condition [7]

cAt < é, wheres =2 (k =0) ands = k+1 (k>=1).
S

to the time domain and then use the central-difference method
to discretize the equations and apply the FDTD [6].

In order to obtain resonant frequencies of different modes in
onesimulation, several Gaussian pulses localized inside the res-
onator are used. The reason we used more than one excitation
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1
—O- FFT alone (13 sample data) TABLE |
09F : . s+ FFT alone (300 sample data) RESONANT FREQUENCIES ASDETERMINED USING THE ANALYTICAL METHOD,
‘ : —— FFT&Pade (13 sample data) _ THE FFT APPROACH AND THE FFT TECHNIQUE IN COMBINATION WITH THE
- PADE APPROXIMATION. THE PERCENTAGEERRORS AREALSO LISTED
k3
g Mod Analytical Result FFT FFT&Pade
) oaes
£ (GHz) (GHz) | Brron(%) | (GHz) | Error(%)
Q
=]
E’_ HEM,,, 8.3177 8.3200 0.0277 8.3172 0.0060
'§ HEM,,, 7.4995 7.4707 0.3840 7.4979 0.0213
2
£ HEM,,, 9.7139 9.6680 | 0.4725 | 9.6995 | 0.1482
4
HEM,;, 11.8310 11.7554 0.6390 | 11.8217 0.0786
. HEM;,, 9.0250 8.9356 0.9906 8.9922 0.3634
% 1 T ey Gy 2 2 HEM,, 12.8107 127442 | 05191 | 127618 | 03817
. . . L . HEM 13.3215 13.1836 1.0352 | 13.2316 0.6478
Fig. 3. Normalized frequency response of a dielectric disk: ragius mm !
thickness= 1.8 mm, permittivity= 12.25. This is theHE,4; mode.
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Fig. 4. Cross section of a dielectric resonator with raditis= 5.25 mm, o1y
thicknessH = 4.62 mm, and relative permittivity,. = 38. 0 . :
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is that a mode can be missed if the single excitation is placgd
at the null field points of the mode. In our method, such a miss
is avoided by placing excitations at different locations. At any
other points inside the resonator, the fields can be recorded for TABLE I

each iteration for subsequent use in determining the reson&hfACTORSOBTAINED USING THE FFT APPROACH AND THEFFT TECHNIQUE
IN COMBINATION WITH THE PADE APPROXIMATION IN COMPARISON TO

5. Frequency-domain response after the Padé approximation.

frequencies and)-factors. By using the FFT methodl, the re- . EXPERIMENTAL VALUES
sponses can be transformed to the frequency domain to obtain
the frequency response. Frequency Q-factor
Modes (GHz) FFT FFT&Pade Experimental
. . Z . . . .

B. Extrapolation of Resonant Frequencies apdractors (262,144 iterations) | (3,000 iterations) Value

As discussed above, the FFT approach is limited due to tl 7E,s | 48713 47.0000 50.1276 51
extremely long execution time needed to obtain accurate res<
nant frequencies an@-factors. In this section, we will present HEMy;q | 63228 62.0000 653213 /
an effective method that combines the FFT technique with tt ™, 75083 $6.0000 90.7005 86
Padé approximation [3].

This approach is based on the Padé approximation, which 7&,; 9.1199 47.4286 49.0409 /

an effective mathematical technique used to interpolate the res-
onant frequencies ang-factors. To overcome the limitation of
the FFT method, we employ the Padé approximation in conjunghere P(w) is a complex vector-valued function af repre-
tion with the FFT scheme in a two-step process. First, we apglgnting one of the six electromagnetic components. The first
the FFT on the FDTD results to obtain a coarse response. tBem on the right-hand side of (13) contains all of the poles of
response is then further processed using the Padé approximatign) and the second term represents the remainder. The Padé
to obtain the accurate resonant frequencies@sfectors. approximation constitutes expressifiy(w) in a rational func-
The coarse response obtained by applying the FFT canthg as

represented as a sum of pole series

Qn (w)

P (w) = Py (w)+ Pop () (13) Pl =35 (14)
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Fig. 6. (a) Radial distributiofz = 0 mm), (b) axial distributionp = 1.75 mm), and (c) spatial distribution of thE, -field component for mod&E,.s. The
resonant frequency for this mode is 9.1199 GHz.

where the numerator and denominator polynomiaigw) and from the FFT are different from the number of unknowns. Thus,

Dys(w) are given by the set of equations are thereby either overdetermined or un-
N derdetermined. Therefore, we apply the least square method to

Qn (w) = Z ' solve thg equation undgr this. sjtuation. Once the coefficients of

o polynomials are determined, it is easy to interpolate the sampled

M data to obtain the desired resolution. In Fig. 3, the frequency re-

Dy (w) = Z B, (15) Sponses obtaineql from th_e FF_T alone and the FFT in conjunc-
= tion with the Padé approximation are plotted. One can see that,

to achieve the same accuracy, far less sampled data is needed

] lt\IJODW, {Oévg an?{/iih } arelcoeff;ilﬁ ntfs that needdto be solved forbé using the FFT and Padé approximation together rather than
ets (w;) denote the va ue ot the frequency-domain respong ing the FFT alone. That means much less computational time
obtained from the FFT, which are going to be used as sam & eeded

data at frequency;. By setting/3, = 1, (14) can be rewritten
as

I1l. NUMERICAL RESULTS

M N
Pw)) Z ﬁiwz_z aw' =-Pw;), j=0,....5-1 To test the algorithm, we first studied a parallel-plate cylin-
=t =0 16 drical dielectric resonator. A dielectric resonator of raditis-

(16) 5.25 mm, height ofH = 4.62 mm, and relative permittivity
wheres is the number of sample data, and therefsire¢ M +1 &, = 38 has been considered and placed between two undefined
unknowns. When the number of sampled data obtained from thetallic planes. Fig. 4 shows the cross section of the resonator.
FFT equals the number of unknowns, itis very easy to obtain tfie origin of thep, = coordinate system is placed at the center of
final answer. However, in most cases, the sampled data obtaitteel disk. The reason we chose this cavity is because analytical
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results exist and the resonant frequencies for different modesdes and sample data points, as are other methods that employ
Prony’s method.

can be obtained [8] as follows:

I () K, (w) I (@) 3 K, (w)
wdp (w)  w-Ky, (w) we I (1) n_f'w-Km (w) [1]
mf 2w\t
(i) () m
17)
(3]
where v = Rk*n?—p32, w = R\/fB%2—k?n3,
v = Vur+w? andk = 2nf,/nogo. The propagation
constant?3 = pr/H conforms to the condition of stationary [4]

wave between the two metallic planes.

Table | presents the resonant frequencies as determined usirg]
the analytical method, FFT approach, and FFT technique in
combination with the Padé approximation. For the Padé methody,
2048, 4096, and 8192 time steps were used for the modes of O,
1, and 2 in the azimuthal direction, respectively. For the FFT
method alone, 32 768 time steps were used. As a result, the co 7
putational time was reduced by as much as a factor of 16. The
comparison of resolution of the two methods is also given. Thel8l
average percent error is 0.2392 for the Padé method, in compary,
ison to 0.5811 for the FFT method alone.

The frequency response of mode 0 after the Padé approxima-
tion is shown in Fig. 5. Clearly, the Padé method shows a sig-
nificant advantage, and the much higher resolution in far few
time steps is very encouraging.

To test the validity (and in particular, the validity in estimating
the Q-factors) of the method in open systems, we also applis
our method to the study of an open dielectric resonator havi
a radiusR, heightH, and relative permittivity,. equal to the
previous case. J

To obtain reasonable (converged) results for ¢hactors
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IV. CONCLUSIONS
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