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Numerical Study of Axisymmetric
Dielectric Resonators

Shouyuan Shi, Liuqing Yang, and Dennis W. Prather

Abstract—In this paper, we present an effective approach to
study the behavior of axisymmetric dielectric resonators. This ap-
proach is based on the finite-difference time-domain method and
two accompanying techniques in order to increase the accuracy
and decrease the computational cost. These two techniques are
the fast-Fourier-transform approach and the Padé method. This
method is used to obtain the resonant frequencies and quality
factors for several resonators. Comparisons are made to show the
utility of the method.

Index Terms—Dielectric resonators, FDTD method, -factors.

I. INTRODUCTION

RECENTLY, dielectric resonators based on axisymmetric
structures have been widely studied. In these studies, the

calculation of resonant modes is very important. Unfortunately,
analytic solutions are available only for very simple geometries,
such as homogeneous and cavities bounded by perfectly con-
ducting surfaces. However, in most practical applications, the
resonators usually contain complex structures, such as inhomo-
geneities and complicated boundary conditions. As a result, the
resonant frequencies and-factors—which are crucial param-
eters in the design of resonators—are very difficult to analyze.
In these cases, the cavities must be analyzed using numerical
techniques.

One such technique is the finite-difference time-domain
(FDTD) technique, which has been employed in the past for
the analysis of various types of cavities and open dielectric
resonators [1]–[3]. The advantage of the FDTD technique over
alternate frequency-domain methods, such as the method of
moments (MoM) and finite-element method (FEM), is that
resonant frequencies of all modes can be calculated in a single
simulation by using the time-domain nature of the method
rather than individually sweeping the frequency to capture each
mode.

To obtain the resonant frequencies and the quality factors
( -factors) using the FDTD, one must transform the time-de-
pendent response of the FDTD simulation to the frequency do-
main, say, by using the fast Fourier transform (FFT). After per-
forming the FFT on the FDTD output data, we can derive the
resonant frequencies from the local maxima of the response. The

-factors can then be computed from the following expression:

(1)
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where is the 3-dB bandwidth and is the resonant fre-
quency.

To calculate the resonant frequencies and-factors with high
accuracy and resolution using the FFT method requires a sig-
nificant number of time samples, which, in turn, requires a long
computational time. To overcome this limitation, alternate pro-
cedures have been proposed [1]. Two commonly employed tech-
niques are the Prony’s method and generalized-pencil-of-func-
tion technique, both of which eliminate the need for an FFT by
expanding the time-dependent response in a sum of exponen-
tials. Although both of these methods have advantages over the
FFT technique in terms of the reduction in the computational
time, the accuracy of these methods is very sensitive to the sam-
pling conditions.

In this paper an alternative approach that uses the Padé ap-
proximation in conjunction with the FFT technique to overcome
the above limitations is employed. As a result, our model is
very effective in determining the resonant frequencies and the

-factors in a relatively small time window, which thereby re-
duces computational cost. In addition, in most FDTD simula-
tions, the computational area is 5–10 times larger than the area
of the cavity, or resonator, in order to reduce the effects of re-
flection from the sidewalls. However, such a large FDTD com-
putational region significantly increase both the computational
time and memory requirements. Therefore, in our approach, the
perfectly matched layer (PML) [4], [5] is employed, which al-
lows the absorbing boundary to be placed much closer to the
resonator. As a result, in comparison to previous techniques [1],
[2], our computational time is considerably less.

In Section II, we discuss our method and its use for the
analysis of an axisymmetric perfectly electric conductor (PEC)
bounded cavity and an open dielectric resonator. Several
numerical results and comparisons are presented in Section III.

II. THEORY

A. Axially Symmetric FDTD Method

For an axially symmetric geometry, or so-called body of rev-
olution (BOR), as shown in Fig. 1, one can use a simplified
two-and-one-half dimensional (2.5-D) FDTD algorithm [6] in-
stead of a full three-dimensional (3-D) technique, as described
in [7].

To show this, we begin with the assumption that the angular
variation of the electromagnetic fields has either a
or dependence. For axisymmetric structures, the de-
pendence of field components oncan be represented into
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Fig. 1. Geometry of axisymmetric resonators.

a Fourier series expansion. For example, the electric field
is given by

(2)

with the Fourier coefficients

(3)

In this manner, there will be two independent sets of differ-
ence equations. The field components in one set are rotated 90
with respect to those in another set. Considering that results ob-
tained from each of the two sets will show the same resonance
property, we selected to use only one of them, in which the cos-
inusoidal terms of , , and and the sinusoidal terms of

, , and are used. Since the Fourier modes in the series
expansion are mutually orthogonal, one can solve for the elec-
tromagnetic fields for each mode independently. Furthermore,
for each different mode, the differentiation with respect to
reduces the full 3-D problem to an equivalent 2.5-D one. There-
fore, the Maxwell’s curl equations can be expressed as

(4)

(a)

(b)

Fig. 2. FDTD mesh for an axially symmetric computational region. (a)
Off-axis mesh. (b) On-axis mesh.

and

(5)

where is conductivity and the electromagnetic fields are ex-
pressed in cylindrical coordinates.

Next, the FDTD method can be used to simulate the scattering
of an axially symmetric geometry. To do this, the whole compu-
tational region is divided into several parts, as shown in Fig. 1.

If we now assume that the electromagnetic-field components
are assigned as illustrated in Fig. 2, we can apply the central
difference method to (4) and (5), which can be rewritten as



1616 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 9, SEPTEMBER 2001

(6)

(7)

where ( or ),
, and are discretization length in the- and -directions,

respectively, and is time step that satisfies the dispersion
condition [7]

where and

(8)

From Fig. 2, we see that only the , , and components
lie on the axis. However, only the component along the axis
needs to be computed because the on-axis components of
and are not necessary to update the FDTD fields. Further-
more, only needs to be computed for the mode since
this component equals zero for all modes. This follows
from the fact that any constant-path integral resulting from
Faraday’s Law, about , integrates to zero for . Thus,
the equation for computation of is given as

(9)

As shown in Fig. 1, the computational region is surrounded
by , , , and , on which the appropriate boundary con-
ditions are needed to truncate the region and to reduce unwanted
reflections. No absorbing boundary condition (ABC) is needed
for the boundary because the wave toward the axial center is
a standing wave rather than a propagating wave. To simulate free
space outside the resonator, the perfectly matched layer (PML)
is introduced on boundaries , , and . Previously pre-
sented approaches did not use PMLs,, , and and, there-
fore, placed them at a sufficiently large distances away (gener-
ally two or three times the size of the disk) from the disk to
avoid inaccuracies or instabilities caused by reflection back re-
flections [1], [2]. In our approach, since we use the PML, the
boundaries , , and can be put as close as ten or 15
FDTD cells to the resonator without introducing any inaccu-
racy or instability. Therefore, the FDTD computational region
is truncated to one that is considerably smaller, which signifi-
cantly reduces memory requirements and computational time.
In the case of an open dielectric resonator, no condition needs
to be applied on the surface of the resonator, and in the case of
a cavity bounded by perfectly conducting boundaries, we need
only to set the tangential fields to zero on these boundaries.

To apply the PML, we employed the complex coordinate
stretching method [4], [5] to derive the anisotropic PML ABC,
which was given by

(10)

where

(11)

and

(12)

To do this, we first transform the modified Maxwell equations
to the time domain and then use the central-difference method
to discretize the equations and apply the FDTD [6].

In order to obtain resonant frequencies of different modes in
onesimulation, several Gaussian pulses localized inside the res-
onator are used. The reason we used more than one excitation
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Fig. 3. Normalized frequency response of a dielectric disk: radius= 8 mm
thickness= 1:8 mm, permittivity= 12:25. This is theHE mode.

Fig. 4. Cross section of a dielectric resonator with radiusR = 5:25 mm,
thicknessH = 4:62 mm, and relative permittivity" = 38.

is that a mode can be missed if the single excitation is placed
at the null field points of the mode. In our method, such a miss
is avoided by placing excitations at different locations. At any
other points inside the resonator, the fields can be recorded for
each iteration for subsequent use in determining the resonant
frequencies and -factors. By using the FFT method, the re-
sponses can be transformed to the frequency domain to obtain
the frequency response.

B. Extrapolation of Resonant Frequencies and-Factors

As discussed above, the FFT approach is limited due to the
extremely long execution time needed to obtain accurate reso-
nant frequencies and-factors. In this section, we will present
an effective method that combines the FFT technique with the
Padé approximation [3].

This approach is based on the Padé approximation, which is
an effective mathematical technique used to interpolate the res-
onant frequencies and-factors. To overcome the limitation of
the FFT method, we employ the Padé approximation in conjunc-
tion with the FFT scheme in a two-step process. First, we apply
the FFT on the FDTD results to obtain a coarse response. The
response is then further processed using the Padé approximation
to obtain the accurate resonant frequencies and-factors.

The coarse response obtained by applying the FFT can be
represented as a sum of pole series

(13)

TABLE I
RESONANTFREQUENCIES ASDETERMINED USING THE ANALYTICAL METHOD,
THE FFT APPROACH, AND THE FFT TECHNIQUE IN COMBINATION WITH THE

PADÉ APPROXIMATION. THE PERCENTAGEERRORS AREALSO LISTED

Fig. 5. Frequency-domain response after the Padé approximation.

TABLE II
Q-FACTORSOBTAINED USING THEFFT APPROACH AND THEFFT TECHNIQUE

IN COMBINATION WITH THE PADÉ APPROXIMATION IN COMPARISON TO

EXPERIMENTAL VALUES

where is a complex vector-valued function of repre-
senting one of the six electromagnetic components. The first
term on the right-hand side of (13) contains all of the poles of

and the second term represents the remainder. The Padé
approximation constitutes expressing in a rational func-
tion as

(14)
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(a) (b)

(c)

Fig. 6. (a) Radial distribution(z = 0 mm), (b) axial distribution(� = 1:75 mm), and (c) spatial distribution of theE -field component for modeTE . The
resonant frequency for this mode is 9.1199 GHz.

where the numerator and denominator polynomials and
are given by

(15)

Now, and are coefficients that need to be solved for.
Let denote the value of the frequency-domain response
obtained from the FFT, which are going to be used as sample
data at frequency . By setting , (14) can be rewritten
as

(16)

where is the number of sample data, and there are
unknowns. When the number of sampled data obtained from the
FFT equals the number of unknowns, it is very easy to obtain the
final answer. However, in most cases, the sampled data obtained

from the FFT are different from the number of unknowns. Thus,
the set of equations are thereby either overdetermined or un-
derdetermined. Therefore, we apply the least square method to
solve the equation under this situation. Once the coefficients of
polynomials are determined, it is easy to interpolate the sampled
data to obtain the desired resolution. In Fig. 3, the frequency re-
sponses obtained from the FFT alone and the FFT in conjunc-
tion with the Padé approximation are plotted. One can see that,
to achieve the same accuracy, far less sampled data is needed
by using the FFT and Padé approximation together rather than
using the FFT alone. That means much less computational time
is needed.

III. N UMERICAL RESULTS

To test the algorithm, we first studied a parallel-plate cylin-
drical dielectric resonator. A dielectric resonator of radius

mm, height of mm, and relative permittivity
has been considered and placed between two undefined

metallic planes. Fig. 4 shows the cross section of the resonator.
The origin of the , coordinate system is placed at the center of
the disk. The reason we chose this cavity is because analytical
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results exist and the resonant frequencies for different modes
can be obtained [8] as follows:

(17)

where , ,
, and The propagation

constant conforms to the condition of stationary
wave between the two metallic planes.

Table I presents the resonant frequencies as determined using
the analytical method, FFT approach, and FFT technique in
combination with the Padé approximation. For the Padé method,
2048, 4096, and 8192 time steps were used for the modes of 0,
1, and 2 in the azimuthal direction, respectively. For the FFT
method alone, 32 768 time steps were used. As a result, the com-
putational time was reduced by as much as a factor of 16. The
comparison of resolution of the two methods is also given. The
average percent error is 0.2392 for the Padé method, in compar-
ison to 0.5811 for the FFT method alone.

The frequency response of mode 0 after the Padé approxima-
tion is shown in Fig. 5. Clearly, the Padé method shows a sig-
nificant advantage, and the much higher resolution in far fewer
time steps is very encouraging.

To test the validity (and in particular, the validity in estimating
the -factors) of the method in open systems, we also applied
our method to the study of an open dielectric resonator having
a radius , height , and relative permittivity equal to the
previous case.

To obtain reasonable (converged) results for the-factors
when using the FFT alone, a time-stepping window extending
over about 2 (131 072) iterations was needed. However, using
Padé method, only 3000 iterations were required. That repre-
sents a reduction in computational time of nearly 98%. The

-factors obtained using the two methods and measured values
[9] are listed in Table II.

The near-field distribution of the dominant field component
for mode is shown in Fig. 6. We can see that the

field is strongly confined inside the cavity and decays outside
the cavity.

IV. CONCLUSIONS

In this paper, we have employed the FDTD method with an
alternative extrapolation method to analyze the dielectric res-
onator with parallel perfectly conducting plates and an open di-
electric resonator. By comparison, the combination of the Padé
method and FFT technique shows great advantage in reducing
the computational time while producing an accurate solution.
In addition, the application of a PML as an absorbing boundary
enables the computational region to be kept small, thereby fur-
ther reducing the computational cost. Also, the algorithm we
proposed is not sensitive to input parameters, such as number of

modes and sample data points, as are other methods that employ
Prony’s method.
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